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Abstract: A well-established assumption in tennis is that

point outcomes on each player’s serve in a match are

independent and identically distributed (iid). With this

assumption, it is enough to specify the serve probabili-

ties for both players to derive a wide variety of event dis-

tributions, such as the expected winner and number of

sets, and number of games. However, models using this

assumption, which we will refer to as “point-based”, have

typically performed worse than other models in the litera-

ture at predicting the match winner. This paper presents

a point-based Bayesian hierarchical model for predict-

ing the outcome of tennis matches. The model predicts

the probability of winning a point on serve given sur-

face, tournament and match date. Each player is given

a serve and return skill which is assumed to follow

a Gaussian random walk over time. In addition, each

player’s skill varies by surface, and tournaments are given

tournament-specific intercepts. When evaluated on the

ATP’s 2014 season, the model outperforms other point-

based models, predicting match outcomes with greater

accuracy (68.8% vs. 66.3%) and lower log loss (0.592

vs. 0.641). The results are competitive with approaches

modelling the match outcome directly, demonstrating

the forecasting potential of the point-based modelling

approach.

Keywords: Bayesianmodelling; randomwalk; sports fore-

casting.

1 Introduction
A wealth of research in tennis, such as Newton and Keller

(2005), O’Malley (2008) and Riddle (1988) has shown that

if it is assumed that point outcomes on each player’s serve

in a tennis match are assumed to be independent and

identically distributed (iid), the probability of winning a
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match can be determined from just the probabilities of

winning a point on serve for each player. In addition to

the match-winning probability, probabilities of winning a

service game and winning a set with a given score can

be derived from just the serve-winning probabilities. Bar-

nett et al. (2006) derive a wealth of other metrics, includ-

ing the number of points in a game, tiebreak, set and

match.

Although many predictions can be made using the iid

assumption, it is only an approximation. Pollard, Cross,

and Meyer (2006) analyse patterns of set wins and find

evidence that the probability of winning a set varies from

set to set. Klaassen and Magnus (2001) analyse 90,000

points from Wimbledon matches between 1992 and 1995

and find deviations from iid behaviour. They suggest how-

ever that these deviations are small and that the iid model

may still be useful for match prediction. Similarly, Newton

and Aslam (2006) investigate a variety of possible non-iid

effects using a Monte Carlo simulation and find that the

iid model remains robust even when non-iid effects are

introduced.

In Kovalchik (2016), the author compares 11 published

tennis predictionmodels by predicting the ATP’s 2014 sea-

son. Models are broken into three classes: models using

the iid model for match prediction, which we will refer

to as “point-based models” from now on; models based

on regression approaches; and paired comparison mod-

els. The best point-based model was found to have lower

accuracy and higher log loss than the best regression and

paired comparison models.

This paper introduces a new point-based model. The

paper’s contributions are the following: firstly, it improves

on the previous best published point-based model and

outperforms the regression models in Kovalchik (2016),

coming close to matching the best reported model, an

Elo model (Elo 1978) with a customised k-factor devised
by the website FiveThirtyEight (Morris and Bialik 2015).

Secondly, to the best of our knowledge, it is the first

Bayesian hierarchical model presented for predicting ten-

nis matches. The hierarchical model allows the fitting of

player and surface-specific skills, as well as tournament-

specific adjustments, evenwhen there are few or no obser-

vations for some combinations.

mailto:martin.ingram@gmail.com
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2 Methods

2.1 Data

To be able to compare directly with the results obtained

in Kovalchik (2016), the ATP’s 2014 season is used as a

validation set.

Table 1 shows summaries of this validation set, bro-

ken down by surface. The dataset was obtained by scrap-

ing MatchStat.com. Retirements, walkovers and matches

without serving statistics (total points played and total

points won on serve for each player) were discarded. Sur-

faces are broken down into three categories: clay, grass

and hard. Hard court matches are most prevalent, repre-

senting more than half of the tournaments and matches

played, followed by clay courts, followed by grass courts,

which only comprise about 10% of total matches played.

Not all players play on all surfaces,with only justmore

than half participating in at least one grass court match.

On average, a player serves 80 points per match, winning

51 of these, or about 64%. This percentage is higher on

grass courts (67%) and lower on clay courts (62%). Grass

court matches average more service points played, which

is likely due to the fact that Wimbledon, which uses the

longer best of five sets format, contributes over half of the

matches played on grass in the dataset (124).

2.2 Model

2.2.1 Likelihood

In every tennis match, each player serves a number of

times n and wins y of those points. We divide each match

in the dataset into these two contests on serve, referring

to each as a “serve-match”. The likelihood for each serve-

match i given by:

yi ∼ Binomial(ni , θi) (1)

where θi is the serve-winning probability in that serve-

match. This assumes that theoutcomeoneachof aplayer’s

Table 1: Summaries of the 2014 validation set.

Clay Grass Hard Overall

Tournaments 22 5 33 60
Matches 736 232 1240 2208
Unique players 186 144 215 267
Average serve points played 78 95 79 80
Average serve points won 48 64 51 51
Fraction of serve points won 62% 67% 64% 64%

ni serves in the match is the result of a Bernoulli trial with

the same success probability θi, thus making use of the iid

assumption.

In the following, we also divide time into periods.

Players’ skills are assumed to be constant within a time

period. Shorter periods allow the model to adapt more

quickly to skill changes but also require a larger number

of parameters to be estimated. The shortest period length

considered in this paper is one month, and the largest is

twelve.

The serve-winning probability θi is further broken

down as follows:

logit(θi) = (αs(i)p(i)−βr(i)p(i))+(γs(i)m(i)−γr(i)m(i))+δt(i)+θ
0

(2)

Here, the quantities α, β, γ, δ and θ
0
represent the

following:

– αs(i)p(i) is server s(i)’s serving skill in period p(i)
– βr(i)p(i) is returner r(i)’s returning skill in period p(i)
– γs(i)m(i) is server s(i)’s additional skill on surfacem(i)
– γr(i)m(i) is returner r(i)’s additional skill on surfacem(i)
– δt(i) is the adjusted serve intercept at tournament t(i),

and

– θ
0
is an intercept representing the average player’s

probability of winning a point on serve.

Breaking down equation (2) into its individual terms, the

first term in brackets represents the server’s serving skill

adjusted by the opponent’s return skill, the second rep-

resents the difference in skill preferences for the match

surface, and the third corrects for tournament variation in

the difficulty of winning a point on serve.

Equation (2) builds on the opponent-adjusted model

by Barnett and Clarke (2005). They also adjust a player’s

serve skill by the opponent’s return skill and have a

tournament-specific intercept, but do not add a surface-

specific offset.

2.2.2 Priors

The initial serve and return skills α and β are drawn from

a normal distribution:

α
.1

∼ N(0, σ2α0) (3)

β
.1

∼ N(0, σ2β0) (4)

The initial variance parameters are given hyperpriors:

σα0 ∼ H(0, 1) (5)

σβ0 ∼ H(0, 1) (6)

http://www.matchstat.com
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where H is the half-normal distribution which assigns

non-zero probability only to positive values. This

hierarchical prior shrinks players’ skills towards the group

serve and return priors given by equations (3) and (4).

Similarly, the tournament-specific intercepts and

surface-specific preferences are independently drawn

from zero-centred normal distributions with half-normal

variance hyperpriors:

γ
..

∼ N(0, σ2γ) σγ ∼ H(0, 1) (7)

δ
.

∼ N(0, σ2δ) σδ ∼ H(0, 1) (8)

Finally, the serve and return skills are assumed to

follow a random walk over time:

α
.p+1

∼ N(α
.p , σ2α) (9)

β
.p+1

∼ N(β
.p , σ2β) (10)

σα , σβ ∼ H(0, 1) (11)

Thus, the randomwalk is assumed Gaussian, with the

same variance between periods for each player. This ran-

dom walk assumption is also made in Glickman (1999) to

derive the Glicko paired comparison model.

In the section above, we used unit half-normal dis-

tributions as hyperpriors for all variances. Two alterna-

tives were considered: a flat prior giving equal probabil-

ity to all positive values, and the inverse-gamma distri-

bution, which is often used due to it being the conjugate

prior for a normal observation model with known mean

but unknown variance (Gelman et al. 2013). We prefer the

unit half-normal prior to the flat prior, since large val-

ues for variances are unlikely a priori. For instance, serve-

winningprobabilities above 80%, or 1.38 on the logit scale,

are rarely observed, suggesting that the standard devia-

tion in player skills is unlikely to be much larger than this

value. Theunit half-normal prior expresses this preference

for smaller values. The inverse-gamma prior could also be

used to assign greater probability to smaller values; how-

ever, it places zero mass on variances of zero, which is not

always desirable. For instance, the randomwalk standard

deviations σα and σβ may be zero if there is no evidence

that players’ skills do not vary over time, suggesting that

this should not be ruled out.

2.2.3 Model fitting and prediction

The model is fit using the NUTS Hamiltonian Monte Carlo

sampler implemented in Stan (Carpenter et al. 2016). To

compare the influence of the period length, separate mod-

els with period lengths of 12, 6, 3, 2 and 1 month(s)

are fit. In addition, for each period length, model fit-

ting is started in 2013, 2012 and 2011 to compare per-

formance. Convergence was assessed using the
^R statis-

tic (Gelman and Rubin 1992), which is reported by Stan;

all values were below 1.1. Code to fit the model is avail-

able online at: https://github.com/martiningram/tennis_

bayes_point_based.

To predict each period of 2014, the model is fit with

all data up to but excluding that period. The 4000 pos-

terior samples returned by Stan are used to calculate θi
for each serve-match, and win expectations are calcu-

lated by averaging the iid win expectation obtained by

each pair of posterior draws for the serve-winning prob-

abilities of the players involved. Skills for unseen play-

ers and tournaments are drawn from their group level

prior distributions so that predictions are made for all

matches.

For the 2013 start, the 12 month period was skipped,

since this would only give the model a single period to

fit, making the estimation of period-to-period variation σα
and σβ impossible.

2.3 Evaluation

2.3.1 Metrics

The model is evaluated on four metrics: accuracy and

log loss for match prediction, and root mean square error

(RMSE) on the sum and difference of serve-winning prob-

abilities of each match.

At the match level, accuracy was chosen because it is

an intuitive measure, while log loss gives a better sense of

the quality of the model’s probability estimates.

As shown by Klaassen and Magnus (2003), the match

winprobability in the iidmodel is driven almost entirely by

the difference of serve-winning probabilities in a match,

which we will refer to as θi − θj, where θi is a player’s

serve-winning probability in the match, and θj is their

opponent’s. It should be noted that although only serve-

winning probabilities are considered, this does not mean

that return skills are unimportant; as equation (2) shows,

the probability θi is assumed to be a function of both

player i’s serving skill and their opponent j’s returning

skill, so the sum and difference will involve both play-

ers’ return and serve coefficients. For in-play forecasts at

unequal scores and at later stages in a match, the sum

θi+θj becomes important. In addition, Barnett and Clarke

(2005) suggest that match length is driven by the sum

https://github.com/martiningram/tennis_bayes_point_based
https://github.com/martiningram/tennis_bayes_point_based
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of serve-winning probabilities. Because of their different

significance in the iid model, the quality of sum and dif-

ference predictions are analysed separately.

2.3.2 Baseline models

The model is compared against the best-performing point-

based model found in Kovalchik (2016), which is the

opponent-adjustedmodel presented in Barnett and Clarke

(2005), as well as the best-performing model overall,

FiveThirtyEight’s Elo model, which uses a custom non-

linear function of the number of matches played by each

player to calculate its k-factor (Morris and Bialik 2015).
The opponent-adjusted model’s predictions were

made by considering the last year of matches leading up

to eachmatch, and the tournament average serve-winning

probability was calculated by averaging the serve-winning

probabilities of all matches played at that tournament in

the previous two years. The Elo model was fit using the

functional form of the k-factor suggested by the authors

and with the fit beginning at the start of the Open Era

(1968).

It isworth noting that the Elomodel uses the same link

function as the model presented in this paper. In the Elo

model, the likelihood can be written as

p(A wins|RA , RB) =
1

1 + 10
(RB−RA)/400

(12)

where RB is player B’s Elo rating at the time of the match,

and RA is player A’s. The function transforming the dif-

ference RB − RA to the win probability is a rescaled ver-

sion of the inverse logit link used in equation (2). Both

Elo and the model presented in this paper assume that

match outcomes are the result of differences in player

skills that vary dynamically over time. However, Elo only

considers match win and loss, not point win and loss,

and does not assume that players’ skills follow a random

walk over time. In addition, Elo ratings lack the ability to

incorporate covariates such as the surface-specific skills

and tournament intercepts.

3 Results

3.1 Performance as a function of period
length and start date

Figure 1 summarises the evaluation results at the match

level obtained with each combination of starting year and

period length. Reducing the period length from 12 months

to 2 months appears to improve log loss for all models,

but dropping it from 2 months to a single month does

not appear to yield further gains. Earlier starts appear

to improve performance, with the 2011 curve consistently

producing a lower log loss and higher accuracy than the

later starts. The model starting in 2011 with 2 month peri-

ods has the lowest log loss at 0.592. This model also has

the highest accuracy, at 68.8%. The model with a period

length of 6months starting in 2013 has the lowest accuracy

(66.9%).

Figure 2 shows the same breakdown, but for the RMSE

of the difference θi −θj and the sum θi +θj. The trends are
very similar, with earlier starts resulting in lower errors,

and shorter periods improving performance until a period

length of twomonths, afterwhich the error appears to level

off.

Overall, the model with the best figures on all metrics

is the model starting in 2011 with 2 month periods.

Figure 1:Match-level evaluation results. The left hand plot shows log loss for different period dates and start years, and the right hand plot
breaks accuracy down in the same way.
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Figure 2: Point-level evaluation results. The left hand plot shows the RMSE for the difference, while the right hand plot shows the RMSE for
the sum for different settings of the period length and starting year.

Table 2: Summaries of the 2014 out-of-sample metrics for the best
proposed model (2011 start, 2 month periods).

Accuracy Log
loss

RMSE
θi + θj

RMSE
θi − θj

Opponent-adjusted 66.3% 0.641 0.0993 0.130
538 Elo 69.5% 0.586 N/A N/A
Best proposed model 68.8% 0.592 0.0904 0.125

3.2 Comparison against baseline models

Table 2 compares the metrics of the best model against

the baseline models.¹ The model strongly outperforms the

opponent-adjustedmodel on all metrics, with 2.4% higher

accuracy, 0.049 lower log loss, and reduced RMSE on both

sum and difference of serve-winning probabilities. Com-

pared to Elo, themodel’s accuracy and log loss are slightly

worse. Elo does not predict serve-winning probabilities,

hence the missing values in the table for the point-level

RMSE scores.

3.3 Posteriors for model coeflcients

3.3.1 Group level variance and intercept posteriors

Table 3 summarises the posterior inferences obtained

for the group level variance parameters in the best-

performing model. With posterior medians of 0.154 and

0.124, respectively, the largest source of variation is the

1 The accuracy and log loss reported in this paper for Elo is the

same as that reported for the 2014 season in Kovalchik (2016). How-

ever, Kovalchik reports slightly better performance for the opponent-

adjusted model (67% accuracy and 0.63 log loss). These differences

are small however and are likely due to small differences in the

datasets used.

Table 3: Posterior summaries of the group level variance parameters
and overall intercept θ0 for the model with fit starting in 2011 and 2
month periods.

2.5% 25% median 75% 97.5%

σα0 0.138 0.148 0.154 0.160 0.172
σβ0 0.109 0.119 0.124 0.130 0.140
σγ 0.059 0.064 0.067 0.070 0.076
σδ 0.057 0.064 0.069 0.073 0.082
σα 0.034 0.037 0.039 0.041 0.044
σβ 0.023 0.025 0.027 0.028 0.031
θ0 0.473 0.493 0.503 0.514 0.533

initial uncertainty of players’ serve and return skills σα0
and σβ0. The variation in surface preferences σγ is about

as large as the variation in tournament-specific intercepts

σδ. Finally, period-to-period variation of serve skills σα
is slightly larger than period-to-period variation in return

skill σβ.
The posterior for the overall intercept θ

0
has amedian

value of 0.503, indicating that the estimated median win

probability on serve for equally-matched players at an

average tournament and surface is 62.3%.

3.3.2 Player serve and return posteriors

The model produces serve and return posteriors for each

time period, but for the sake of brevity, we focus on the

posteriors for one period: the two-month period starting in

September 2014. Tables 4 and 5 show posterior summaries

for the ten highest serve and return skills estimated for

this period. The best servers in this period were estimated

to be Ivo Karlovic, Milos Raonic, John Isner and Roger

Federer; the best returners were Novak Djokovic, Andy

Murray, Rafael Nadal and David Ferrer. Roger Federer and

Novak Djokovic are the only players to be in both tables,
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Table 4: Posterior summaries of the serve-skills α for the servers
with the highest median skill in the two-month period starting in
September 2014.

2.5% 25% median 75% 97.5%

Ivo Karlovic 0.53 0.61 0.66 0.70 0.78
Milos Raonic 0.46 0.53 0.57 0.61 0.69
John Isner 0.41 0.50 0.54 0.58 0.66
Roger Federer 0.39 0.47 0.51 0.55 0.63
Jo-Wilfried Tsonga 0.30 0.39 0.43 0.48 0.57
Novak Djokovic 0.30 0.38 0.42 0.47 0.55
Sam Groth 0.24 0.34 0.39 0.45 0.56
Juan Martin Del Potro 0.18 0.32 0.39 0.46 0.59
Marin Cilic 0.22 0.30 0.34 0.39 0.46
Stan Wawrinka 0.21 0.29 0.34 0.38 0.47

Table 5: Posterior summaries of the return skills β for the highest-
median returners during the two-month period starting in
September 2014.

2.5% 25% median 75% 97.5%

Novak Djokovic 0.34 0.41 0.44 0.48 0.55
Andy Murray 0.29 0.36 0.39 0.43 0.50
Rafael Nadal 0.24 0.32 0.36 0.40 0.48
David Ferrer 0.25 0.32 0.36 0.39 0.46
Kei Nishikori 0.20 0.27 0.31 0.34 0.41
Roger Federer 0.19 0.26 0.29 0.33 0.39
Gael Monfils 0.17 0.25 0.29 0.33 0.41
David Nalbandian 0.07 0.20 0.27 0.34 0.48
Axel Michon 0.03 0.19 0.27 0.35 0.51
Gilles Simon 0.16 0.23 0.27 0.31 0.38

suggesting that they are very effective both when serving

and returning.

Figure 3 compares the median serve and return skill

estimates, again for the period starting in September 2014.

Eight players are highlighted: four with the highest serve

skills, and four with the highest returning skills. The very

strongest servers – John Isner and Ivo Karlovic – have

relatively low return skill estimates. Among the players

with the highest return skills, there is some variety: Nadal,

Djokovic and Federer have high skill estimates on both

serve and return, while Andy Murray and David Ferrer

have high median return skills but somewhat lower serve

skill estimates.

3.4 Serve and return estimates over time

In the previous section, we focused on the model’s esti-

mates in a particular period. To illustrate the model’s

dynamic aspect, Figure 4 shows the evolution of serve and

return skills over time for Roger Federer and Rafael Nadal.

Federer generally had the higher serve skill estimate

during this period, while Nadal had the higher return skill

estimate.

On serve, Federer appeared to decline from February

2012 onwards, reaching a minimum in July 2013 before

improving again in early 2014. Nadal shows an opposite

trend, generally improving until he reached a peak in

July 2013 and declined again. On return, the shifts are

less dramatic, although Federer appears to show a slight

upward trend.

Figure 3:Median posterior serve and return skills plotted against each other. Players with the four highest median serve and return skills
are labelled.
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Figure 4: Serve and return skills evolving over time for Roger Federer and Rafael Nadal. The shaded regions denote 95% credible intervals.

The shaded 95% credible intervals are relatively con-

stant throughout. One exception are the final periods for

Rafael Nadal, during which the credible intervals widen.

Nadal did not play in the period between Wimbledon

(starting in the last week of June 2014) and Beijing (start-

ing in the last week of September 2014), and the widen-

ing intervals indicate that his lack of play make his skill

estimate more uncertain.

3.5 Surface skills

The estimated values for the surface preferences γ on dif-

ferent surfaces are shown in Table 6 for the top 3 highest

median skills. On clay, Rafael Nadal has the highest

preference, improving his serve and return skill by a

median amount of 0.16. On grass courts, Lleyton Hewitt

showed the largest boost, and James Blake has the largest

median preference for hard courts.

Table 7 shows the lowest surface preferences for each

surface. The player with the second-largest preference for

clay, Pablo Andujar, has the lowest preference on grass;

the player with the highest preference for grass, Lleyton

Hewitt, has the third lowest preference for clay. This agrees

with conventional wisdom in tennis that clay-court spe-

cialists tend to struggle on grass courts, and vice versa.

The range of skills on clay ranges from +0.16 (Rafael

Nadal) to −0.11 (Benjamin Becker). On grass, the range

Table 6: Top 3 median highest surface skill estimates γ for each surface.

surface 2.5% 25% median 75% 97.5%

clay Rafael Nadal 0.08 0.13 0.16 0.18 0.24
Pablo Andujar 0.06 0.11 0.14 0.17 0.23
Federico Delbonis 0.04 0.10 0.13 0.16 0.22

grass Lleyton Hewitt 0.03 0.09 0.12 0.14 0.20
Brian Baker 0.00 0.07 0.11 0.15 0.22
Andy Murray 0.03 0.08 0.11 0.14 0.19

hard James Blake 0.01 0.07 0.10 0.13 0.19
Novak Djokovic 0.02 0.07 0.10 0.12 0.18
Somdev Devvarman 0.00 0.06 0.09 0.12 0.18
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Table 7: Top 3 lowest surface skill estimates γ for each surface.

surface 2.5% 25% median 75% 97.5%

clay Benjamin Becker −0.21 −0.15 −0.11 −0.08 −0.01
Lukas Lacko −0.20 −0.13 −0.10 −0.06 −0.00
Lleyton Hewitt −0.19 −0.13 −0.10 −0.07 −0.00

grass Pablo Andujar −0.28 −0.21 −0.18 −0.15 −0.08
Daniel Gimeno−Traver −0.22 −0.15 −0.11 −0.08 −0.01
Carlos Berlocq −0.18 −0.12 −0.09 −0.05 0.01

hard Jan Hajek −0.21 −0.14 −0.11 −0.07 −0.01
Jabor Mohammed Ali Mutawa −0.23 −0.14 −0.10 −0.05 0.03
Filippo Volandri −0.18 −0.12 −0.09 −0.05 0.01

Figure 5:Median clay court preferences plotted against median grass court preferences for the period of September 2014.

is between +0.12 (Lleyton Hewitt) and −0.18 (Pablo

Andujar). Preference estimates are less diverse on hard

courts, ranging from +0.10 (James Blake) to −0.11 (Jan

Hajek).

Figure 5 shows a scatter plot ofmedian clay court pref-

erence against median grass court preference. The plot

appears to showanegative correlation: playerswith strong

skills on clay tend to have low skills on grass, and vice

versa. The cross-shaped accumulation of points near zero

shows the effect of the independent hierarchical prior,

which independently shrinks players’ skills on grass and

clay towards zero.

3.6 Tournament intercepts

Figure 6 shows the posteriors obtained for the inter-

cepts of tournaments played in 2014. Generally speak-

ing, and as expected from the summaries in Table 1, clay

court tournaments appear to be associated with lower

expected probabilities of winning a point on serve, while

the opposite is true for grass court tournaments. Hard

court tournaments span a wider range, with some inter-

cepts close to those of clay court tournaments (such as

Beijing, Acapulco and Indian Wells) and others closer to

those of grass court tournaments (such as Marseille and

Montpellier). In the case of Acapulco, it should be noted

that the tournament was played on clay from 2011 to 2013.

The largest intercepts are observed for the grass court

tournaments ofHalle andWimbledon,withmedian values

of +0.15 and +0.14, respectively. The smallest are the clay

court tournaments inMonte Carlo andUmag, withmedian

estimates of −0.14 and −0.13.

3.7 Match prediction example: 2014 French
Open Final

To illustrate the model’s use for prediction, we show how

the model predicted the 2014 French Open final, in which
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Figure 6: Posterior estimates of tournament-specific intercepts for tournaments played in 2014, coloured by surface, together with their
95% credible intervals.
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Rafael Nadal beat Novak Djokovic in four sets, 3-6 7-5

6-2 6-4.

The match took place on the 8th June 2014, so

to predict this match using the model with two-month

periods, the model is fit up to the start of May 2014. The

serve and return skill posteriors for Nadal andDjokovic are

then obtained by adding the period-to-period variance to

their May 2014 estimates.

Figure 7 shows theposterior estimates for the twoplay-

ers. Novak Djokovic’s serve skill was likely to be higher

than Rafael Nadal’s, and so was his return skill. How-

ever, RafaelNadal’s preference for claywas estimated to be

much greater than Novak Djokovic’s, and so the posterior

mode of his predicted serve-winning probability is slightly

greater than Novak Djokovic’s.

Figure 8 shows the results of using the posterior sam-

ples together with the iid model of a tennis match. The

iid model suggests that the outcome – Nadal winning

in 4 sets – was most likely, and that Nadal’s mean win

probability was 58%. In the match, Nadal won 66% of

points on serve and Djokovic won 60%, both of which fall

within the 95% credible intervals shown.

Had Nadal and Djokovic played on grass at Wimble-

don instead, the win probabilities would have looked very

different. Figure 9 shows the serve probability estimates

and the predictions made by the iid model for this hypo-

thetical scenario. On grass, themost likely outcomewould

be a win by Novak Djokovic in three sets.

4 Discussion

4.1 Strengths and weaknesses of the
proposed approach

As the evaluation results in Table 2 show, the proposed

model outperforms the previous best point-based model

by a large margin. This suggests that, if the goal is to pre-

dict serve-winning probabilities, the proposed approach is

a better choice. As illustrated in the previous section, the

advantage of predicting serve-winning probabilities is that

the iidmodel of a tennismatch canbeused topredictmany

aspects of a match, not just win or loss. In addition to the

probability of set scores shown, the iid model can also be

used to derivewin probabilities conditional on the score in

a match, allowing it to provide in-match win probabilities

(Klaassen and Magnus 2003).

Figure 7: Serve, return and surface skill estimates for Novak Djokovic and Rafael Nadal for the 2014 French Open final, as well as the
predictions of their serve-winning probabilities.
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Figure 8: Predictions made for the 2014 French Open final using the iid model.

Figure 9: Predictions made for a hypothetical Wimbledon match between Nadal and Djokovic in the period starting March 2014.
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Another strength of the proposed model is the inter-

pretability of its results. As shown in the results section,

the model estimates player-specific surface effects,

allowing players to be characterised by their surface skills.

The match prediction examples of Nadal – Djokovic on

clay and grass illustrate that the differences between sur-

face skills can be considerable. The tournament-specific

intercepts reveal an interesting range of coefficients for

tournaments, with some surprising results, such as the

clay court tournament in Sao Paulo, which has a higher

intercept than some grass court tournaments.

For match outcome prediction, the model performs

slightly worse than Elo, despite its additional complex-

ity. A number of reasons may explain why Elo performs

so well. Firstly, Elo does not make the iid assumption.

It may be that targeting match outcomes directly, rather

than serve-winning probabilities, helps it perform better.

Secondly, Elo is able to update more quickly than the

model proposed. While the shortest period considered for

the model in this paper is one month, Elo ratings are

updated after each match. Finally, Elo is much faster to

fit, allowing it to use much more data: while an efficient

implementation of Elo can be calculated with a 1968 start

in under a minute, the proposed model (2 months with a

start in 2011) takes about 80minutes to fit, which limits the

amount of data that can be used. Figure 1 suggests that ear-

lier starts may lead to reduced error, indicating that more

data may also help this model perform better. An approx-

imate solution of the model, using, for example, expec-

tation propagation (Minka 2001) or similar techniques to

those applied in the derivation of Glicko (Glickman 1999)

could be of interest.

However, it should be noted that Elo only predicts the

match outcome and thus cannot make the wealth of pre-

dictions concerning the match that point-based models

can. A recent paper by Kovalchik and Reid (2018) illus-

trates how Elo forecasts can be “calibrated” to estimate

the serve-winning probabilities, but this can only be done

by making additional assumptions about players’ serving

skills.

4.2 Possible additions to the model

Figure 5 suggests that playerswho excel on clay courtsmay

be likely to be less proficient on grass courts. A multivari-

ate hierarchical prior allowing for correlation among the

surface skills could provide a better fit to the data.

As mentioned, the skill evolution assumes that play-

ers’ skills change smoothly from one period to the next

with equal variance. In some situations, this assumption

may not hold; for example, players could sustain injuries,

leading to a more rapid decrease in skill than this random

walk can accommodate. Allowing the random walk vari-

ances to change at each period, as proposed for example

in Glicko 2 (Glickman 2001), could handle this situation

better.

To improve predictive accuracy, it may also be neces-

sary to move beyond the iid assumption. Using point-level

data and indicators such as “set down” and “break point”

derived from this data as proxies for pressure, Kovalchik

and Ingram (2016) assessed players’ deviations from iid

behaviour and developed a Monte Carlo model of ten-

nis matches taking these deviations into account. Another

effect that could be interesting to explore is whether play-

ers tend to tire over the course of the match, and whether

this differs by player. For instance, players relying on a

strong serve may tire more quickly than those who are

particularly skilled at returning, or vice versa. Fitting the

proposed model at the point level and including point-

level predictors would likely improve predictive accuracy,

although it would increase the data set size substantially,

since each match could no longer be summarised by the

sufficient statistics “points played on serve” and “points

won on serve”.

4.3 Conclusions

In summary, the proposed model improves on the state

of the art in point-based prediction models for tennis

and comes close to matching the strong baseline of Elo

for match outcome prediction. Future work could include

modelling non-iid effects, as well as working on speeding

up model fit.
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